首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13357篇
  免费   1124篇
  国内免费   1304篇
化学   11569篇
晶体学   98篇
力学   937篇
综合类   171篇
数学   503篇
物理学   2507篇
  2024年   18篇
  2023年   542篇
  2022年   328篇
  2021年   478篇
  2020年   602篇
  2019年   482篇
  2018年   462篇
  2017年   460篇
  2016年   657篇
  2015年   559篇
  2014年   690篇
  2013年   1270篇
  2012年   791篇
  2011年   744篇
  2010年   582篇
  2009年   664篇
  2008年   606篇
  2007年   777篇
  2006年   638篇
  2005年   594篇
  2004年   543篇
  2003年   428篇
  2002年   394篇
  2001年   325篇
  2000年   290篇
  1999年   225篇
  1998年   207篇
  1997年   200篇
  1996年   152篇
  1995年   160篇
  1994年   107篇
  1993年   136篇
  1992年   113篇
  1991年   84篇
  1990年   74篇
  1989年   50篇
  1988年   66篇
  1987年   43篇
  1986年   36篇
  1985年   30篇
  1984年   31篇
  1983年   10篇
  1982年   16篇
  1981年   21篇
  1980年   19篇
  1979年   20篇
  1978年   15篇
  1977年   8篇
  1976年   12篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high Tgof 110℃ and Td of 385℃ and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.  相似文献   
2.
Conjugated polymers feature promising structure and properties for photocatalytic water splitting. Herein, a hydrolysis strategy was demonstrated to rationally modulate the surface hydrophilicity and band structures of conjugated poly-benzothiadiazoles. High hydrophilicity not only enhances the dispersions of polymeric solids in an aqueous solution but also reduces the absorption energy of water molecules. Besides, both theoretical and experimental results reveal that a more positive valence band potential is generated, which contributes to enhancing the photocatalytic water oxidation performance. Accordingly, the surface-modified conjugated polymers show largely promoted photocatalytic water oxidation activities by deposition of cobalt oxides as cocatalysts.  相似文献   
3.
Large amounts of flowback and produced water (FPW) have been generated from hydraulic fracturing process for the production of unconventional gas such as shale gas. Complex organic pollutants are abundantly present in FPW with revealed toxicity to aquatic organisms and these contaminants may transfer into surrounding aquatic environment. Characterization and determination of complicated organic pollutants in FPW remains a challenge due to its complex composition and high salinity matrix. This review article covers the progress of recent 5 years regarding the sample preparation and instrumental analysis methods and thus summarizes the advantages and disadvantages of these methods for critical analysis of organic contaminants in FPW samples. Furthermore, the natural distribution of detected organic compounds and their transformation were reviewed and discussed to enhance the understanding of spatial and temporal behaviors of these organic pollutants in natural environment, paving the way for future development of pollution control policies and strategies. Enlightened by the studies of FPW contamination in the US, the investigations of FPW contamination in China continued to grow due to rapidly growing production of shale gas in China and resulted pollution.  相似文献   
4.
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g−1, with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.  相似文献   
5.
《Mendeleev Communications》2022,32(4):534-536
Correlation times and diffusion coefficients of water molecules were measured for the first time by 1H spin relaxation and pulsed field gradient NMR in Li+, Na+ and Cs+ ionic forms of Nafion 117 membrane. Hydration numbers of Li+, Na+ and Cs+ cations were calculated. It was shown that at high humidity macroscopic transfer is controlled by the local translational motion of water molecules.  相似文献   
6.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
7.
In this study, we have provided a facile solution to synthesize well-aligned titanium dioxide nanorods by using hydrothermal reaction. By calcining the materials under different atmospheres and temperatures, a batch of titanium dioxides with excellent oxygen evolution reaction(OER) catalytic efficiency were obtained. This new structured TiO2 photoanode material yields a high photocurrent density of 5.69 mA/cm2 at 1.23 V vs. reversible hydrogen electrode(RHE) under simulated solar light(100 mW/cm2). Surface photovoltage techniques and other measurements were carried out to confirm that the enhanced photoelectrochemical performances were attributed to the synergistic effect of the phase junction and a certain content of surface states, which accelerate the separation and transmission of the photogenerated charges. This material with phase junction and surface states promises a potential application in the field of photoelectric catalysis under solar light.  相似文献   
8.
This paper concerns with developing of parameters which influence terminal velocities of air and CO2 bubbles in distilled water and kerosene pools. The objective of this study is to validate and correct the formulas that were developed by previous investigators for prediction of terminal velocities. The investigation revealed that the terminal velocity of a single rigid spherical bubble in Newtonian fluids can be developed by balancing of mechanical forces acting on the bubble. However, for large bubbles, because of deforming of the bubble which is a result of interfacial tension, the effect of surface tension should be considered in the terminal velocity prediction formula. By using PSO algorithm and plotting experimental data of terminal velocity against the size of gas bubbles, the suitable equation for each of systems was chosen. Results showed that Jamialahmadi model is more practical for terminal velocity prediction. Jamialahmadi model requires a modification to be utilized for air-kerosene, CO2-kerosene, air- distilled water and CO2-distilled water systems. The developed PSO algorithm model is accurate for prediction of experimental data with an average R2 value of 0.9722.  相似文献   
9.
ABSTRACT

We study the structural, energetic and electronic properties of the structured water chain clusters within the density functional theory. We refer the structured water chains to those water clusters that have specific geometric patterns stretched along one direction. External electric field required to keep the structures open chain, thereby preventing them to form closed structures, is applied along the length of the chain. The structures are essentially periodic with basic repeating unit consisting of the corner- or edge-sharing 4-, 5- or 6-membered ring water clusters. Our calculations underscore the possible existence of such structured water clusters in the electrostatic environments, which we simulate in its simplicity employing a dipolar, uniform and static electric field. Analysis reveals that the 5-membered ring water chain clusters, i.e. the pentamer chain clusters have the lowest average dipole moment per water molecule while the threshold field, that marks the onset of the field-induced closure of the HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital) energy gap, is highest, followed by that for the tetramer and hexamer chains. The results suggest that the pentamer chains are the most stable clusters over a wide range of electric fields.  相似文献   
10.
Phase-resolved information is necessary for many coastal wave problems, for example, for the wave conditions in the vicinity of harbor structures. Two-dimensional (2D) depth-averaging shallow water models are commonly used to obtain a phase-resolved solution near the coast. These models are in general more computationally effective compared with computational fluid dynamics software and will be even more capable if equipped with a parallelized code. In the current article, a 2D wave model solving the depth-averaged continuity equation and the Euler equations is implemented in the open-source hydrodynamic code REEF3D. The model is based on a nonhydrostatic extension and a quadratic vertical pressure profile assumption, which provides a better approximation of the frequency dispersion. It is the first model of its kind to employ high-order discretization schemes and to be fully parallelized following the domain decomposition strategy. Wave generation and absorption are achieved with a relaxation method. The simulations of nonlinear long wave propagations and transformations over nonconstant bathymetries are presented. The results are compared with benchmark wave propagation cases. A large-scale wave propagation simulation over realistic irregular topography is shown to demonstrate the model's capability of solving operational large-scale problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号